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OA Icon

You may feel happy to see this icon alongside the paper you 
desire to read its full text. 
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Types of OA articles

https://ec.europa.eu/info/research-and-innovation/strategy/goals-research-and-innovation-policy/open-science/
open-science-monitor/trends-open-access-publications_en

✎ Gold OA: papers that are publications 
in an open access journal

✎ Green OA: papers that are publications 
in a journal that are also available 
in an OA repository

✎ Hybrid OA: papers that are publications 
in a subscription journal that are 
open access with a clear license

✎ Bronze OA: papers that are published in 
a subscription journal that are open 
access without a license
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Additional type: Black OA 
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Strengths for OA articles

https://www.springernature.com/gp/open-research/about/oa-effect-hybrid

Assessing the open access effect for hybrid journals
Springer Nature and Digital Science have released a new comparative 

study of articles published in Springer hybrid journals

4x  
more 
downloads
of OA articles than  
non-OA articles

1.6x 
more 
citations
of OA articles than non-OA 
articles across all subjects 

2.5x  
more Altmetric 
attention
OA articles attracted  
1.9x more news mentions and 
1.2x more policy mentions

A signi"cant advantage for open access (OA) articles

We performed two multi-disciplinary studies:

1. Global sample 2. UK case study
73,925 journal articles:
3,004 OA articles   
70,921 non-OA articles

9,114 journal articles: 
3,087 OA articles  
6,027 non-OA articles

Modelled* results also found a 
signi"cant advantage for OA:

296% 36%

219% 166%

more downloads more cumulative 
citations

more news mentions more policy mentions

We controlled for:

Institutional 
reputation 
based on the 
proxy of a 
university ranking

Geographic 
region

Journal 
Impact 
Factor 

Subject 
"eld

as a proxy 
for perceived 
journal prestige

About Springer Nature
Springer Nature is leading the way on open 
research. We champion the issues that matter to 
the research community, standing up for science 
and advocating the highest quality and ethical 
standards. Springer Nature is home to some of the 
industry leaders in open access including Nature 
Research, BMC, Springer, and Palgrave Macmillan.

In 2017, we published:
75,000+ OA articles  
in 600+ fully OA journals

15,000 OA articles  
in 1,900+ hybrid OA journals

On average:

Read the full white paper: https://doi.org/10.6084/m9.!gshare.6396290

Based on 73,925 articles with 3,004 OA articles vs. 70,921 
non-OA articles 
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Altmetric

https://en.wikipedia.org/w/index.php?title=Altmetric

Altmetric, or altmetric.com, is a data science 
company that tracks where published 
research is mentioned online, and provides 
tools and services to institutions, publishers, 
researchers, funders and other organisations 
to monitor this activity, commonly referred to 
as altmetrics.

x-dictionary:r:'Data_science?lang=en&signature=com.apple.DictionaryApp.Wikipedia'
x-dictionary:r:'Altmetrics?lang=en&signature=com.apple.DictionaryApp.Wikipedia'
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Types of licenses

https://en.wikipedia.org/wiki/Creative_Commons_license
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Licenses icons

https://creativecommons.org/licenses/by-nc-nd/3.0/tw/
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Licenses versions
Creative Commons 
Attribution 

Creative Commons Attribution-
Noncommercial 

Creative Commons Attribution-
No Derivative Works 
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Citation ranking of the 20 largest 
publishers (2015-2017)

https://frontiersinblog.files.wordpress.com/2018/10/scimago-header-image-2.jpg
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Top 20 publishers by volume

https://frontiersinblog.files.wordpress.com/2018/10/scimago-header-image-2.jpg
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https://frontiersinblog.files.wordpress.com/2018/10/scimago-header-image-2.jpg

Average citations: toll-access vs OA
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OA VS. Predatory journals
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OA VS. Predatory journals

➀
➁
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OA VS. Predatory journals

➂
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OA VS. Predatory journals
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OA VS. Predatory journals
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OA VS. Predatory journals
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OA VS. Predatory journals



20

OA VS. Predatory journals
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OA VS. Predatory journals
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Take Good Advantage of 
Library Resources 
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Some Myths as to OA Journals
✎ Submitted papers will always not be 

rejected

✎ Reviewing processes could be very quick

✎ As long as you pay APC (article 
processing charges) to OA journals, 
which are happy to publish your papers

✎ APC is a huge amount

✎ Reviewing reports from OA journals are 
not important and usually not demanding 



My experiences
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PLOS Computational 
Biology



Frontiers Series OA 
Journals
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BMC Ecology: APC 
and Reviewing Time

Thank you for your payment
A confirmation email has been sent.

You will receive a separate invoice within the next few days.

Do you have any questions concerning your payment?

Our Customer Service team is happy to assist: info@biomedcentral.com

Order details
Payment details
Customer number: 1600317661
Order number: 6877526
Payment method: Visa
Billing Address
Tsung-Jen Shen
250 Guoguang Rd., South Dist.
40227 Taichung, TW

Your item

BMC Ecology
Estimating species pools for a very local ecological assemblage
Back to BioMed Central
Total
£1,370.00
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A general framework for predicting 
delayed responses of ecological 
communities to habitat loss
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Habitat destruction, one of the principal factors driving global biodiversity crisis, causes time-lagged, if not 
instantaneous, loss of species. Such a delayed consequence, described as extinction debt1–5, has been increasingly 
documented in empirical and !eld studies6–8. In addition to debt, ecological processes such as immigration and 
speciation, also part of the responses that require time to ful!l, can positively contribute to species richness of 
ecological communities, which are usually termed as immigration credit3, 4, 9. However, other than simply count-
ing the delayed loss or gain of species, how will the community structure of species assemblages be altered due to 
habitat loss3? Under what conditions will extinction debt or immigration credit occur in local samples? "erefore, 
it is necessary to compare the community patterns at equilibriums before and a#er habitat destruction in order to 
adequately address these important, but yet unsolved, issues.

Recently, Kitzes and Harte (2015) (hereina#er referred as KH for brevity) developed a novel method to esti-
mate the magnitude of extinction debt or immigration credit from two ecological community patterns, namely 
regional species abundance distribution (SAD) and species-speci!c spatial abundance distribution (SAAD). "eir 
method was based on several important assumptions: !rstly, local communities in the region are always open to 
speciation or immigration; secondly, the number of species in a local community is determined jointly by SAD 
and SAAD; thirdly, regional SAD before habitat loss and a#er a long run since habitat loss is assumed to be in 
steady equilibrium; and lastly but most importantly, the whole community or region a#er reaching new steady 
state will follow the same parametric SAD curve as the original regional SAD before habitat loss. "is assumption 
states that the underlying regional SAD model will be kept invariant (some speci!c parameters may be changed).

"ere are indeed other ways to estimate extinction debts10–12. However, the elegancy of KH’s method rests 
with the fact that it is parsimonious and requires only available information as inputs, including the total number 
of individuals of all species, the area size of the whole region, and the percent of habitat loss. Moreover, by using 
this simple information, the !tting of unknown parameters in SAD is very straightforward. In contrast, in many 
previous methods for modelling extinction debts11, 12, some parameters are very di$cult to estimate and the 
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ABSTRACT
Rao’s quadratic diversity index is one of the most widely applied diversity indices

in functional and phylogenetic ecology. The standard way of computing Rao’s

quadratic diversity index for an ecological assemblage with a group of species with

varying abundances is to sum the functional or phylogenetic distances between a pair

of species in the assemblage, weighted by their relative abundances. Here, using both

theoretically derived and observed empirical datasets, we show that this standard

calculation routine in practical applications will statistically underestimate the true

value, and the bias magnitude is derived accordingly. The underestimationwill become

worse when the studied ecological community contains more species or the pairwise

species distance is large. For species abundance data measured using the number of

individuals, we suggest calculating the unbiased Rao’s quadratic diversity index.

Subjects Biodiversity, Ecology, Mathematical Biology, Plant Science

Keywords Biometrics, Forest ecology, Biodiversity measure, Estimation accuracy, Phylogenetic
ecology, Functional traits

INTRODUCTION
Biodiversity is constituted by multifaceted components. Measures of biodiversity thus

should take into account species richness and abundance as well as other characteristics

(like abundance evenness) quantified by information metrics, which are also valuable and

should be incorporated. Rao’s quadratic diversity index is one of the most important

biodiversity metrics that is widely applied to studies of functional and phylogenetic

ecology (Rao, 1982, 2010;Mouchet et al., 2010). Its standard computation is to sum up the

species’ distance between a pair of species i and j (dij) that is weighted by the product of

the relative abundances of both species (pi and pij), given by QðpÞ ¼
P

i 6¼j dijpipj
(Botta-Dukat, 2005; Ricotta, 2005a; Gusmao et al., 2016), where p ¼ ðp1; :::; pSÞ represents
the relative abundance distribution of the assemblage with S species. Here, species’

distance can be very flexible, ranging from phylogenetic to functional (or trait) distances

(Ricotta, 2005b).

However, ecologists do not normally consider the statistical bias of Rao’s quadratic

diversity index when applying it to practical research questions. Herein, statistical bias was
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Extinction debt in local
habitats: quantifying the
roles of random drift,
immigration and emigration
Yongbin Wu1,†, Youhua Chen2,†, Shui-Ching Chang3,

You-Fang Chen2 and Tsung-Jen Shen3

1College of Forestry and Landscape Architecture, South China Agricultural University,
Guangzhou, Guangdong, China
2CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, and
Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province,
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
3Institute of Statistics and Department of Applied Mathematics, National Chung Hsing
University, 250 Kuo Kuang Road, Taichung 40227, Taiwan

T-JS, 0000-0002-1742-9730

We developed a time-dependent stochastic neutral model for
predicting diverse temporal trajectories of biodiversity change
in response to ecological disturbance (i.e. habitat destruction)
and dispersal dynamic (i.e. emigration and immigration). The
model is general and predicts how transition behaviours of
extinction may accumulate according to a different combination
of random drift, immigration rate, emigration rate and the
degree of habitat destruction. We show that immigration,
emigration, the areal size of the destroyed habitat and initial
species abundance distribution (SAD) can impact the total
biodiversity loss in an intact local area. Among these, the SAD
plays the most deterministic role, as it directly determines the
initial species richness in the local target area. By contrast,
immigration was found to slow down total biodiversity loss
and can drive the emergence of species credits (i.e. a gain of
species) over time. However, the emigration process would
increase the extinction risk of species and accelerate
biodiversity loss. Finally but notably, we found that a shift in
the emigration rate after a habitat destruction event may be a
new mechanism to generate species credits.

1. Introduction
Predicting biodiversity change because of climate forcing and
habitat loss is a cornerstone in the research of contemporary
community ecology and conservation biology. However, because

© 2020 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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Abstract: The distribution of individuals of di↵erent species across di↵erent sampling units is
typically non-random. This distributional non-independence can be interpreted and modelled as
a correlated multivariate distribution. However, this correlation cannot be modelled using a totally
independent and random distribution such as the Poisson distribution. In this study, we utilized
the negative multinomial distribution to overcome the problem encountered by the commonly
used Poisson distribution and used it to derive insight into the implications of field sampling for
rare species’ distributions. Mathematically, we derived, from the negative multinomial distribution
and sampling theory, contrasting relationships between sampling area, and the proportions of
locally rare and regionally rare species in ecological assemblages presenting multi-species correlated
distribution. With the suggested model, we explored the cross-scale relationships between the
spatial extent, the population threshold for defining the rarity of species, and the multi-species
correlated distribution pattern using data from two 50-ha tropical forest plots in Barro Colorado Island
(Panama) and Heishiding Provincial Reserve (Guangdong Province, China). Notably, unseen species
(species with zero abundance in the studied local sample) positively contributed to the distributional
non-independence of species in a local sample. We empirically confirmed these findings using the
plot data. These findings can help predict rare species–area relationships at various spatial scales,
potentially informing biodiversity conservation and development of optimal field sampling strategies.

Keywords: spatial and statistical ecology; negative multinomial model; ecological assemblage; species
rarity; species abundance distribution

1. Introduction

For better conservation of biological diversity, ecologists have explored the spatial distribution
patterns of rare species. A variety of ecological mechanisms can contribute to species rarity; for example,
habitat heterogeneity, dispersal limitation, and pest-pressure hypothesis [1–3]. However, the general

Forests 2020, 11, 571; doi:10.3390/f11050571 www.mdpi.com/journal/forests
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Ecological communities are assembled by various mechanisms, including a tradeoff

between colonization and extinction processes. However, it is still unclear how this

tradeoff influences pairwise beta diversity patterns. Herein, we propose a novel likelihood

framework to disentangle the compound impacts of species’ colonization and extinction

rates on community-level compositional dissimilarity, which are ignored by traditional

indices. The framework infers two parameters of colonization and extinction rates,

allowing ecologists to study their latitudinal or broad-scale spatial variation patterns and

test the relative influences of associated environmental factors. More importantly, the

likelihood-based model showed that multi-site beta diversity is essentially identical to

the local colonization failure or extinction rate of species in newly colonized sites but

is not related to species’ colonization rates. Profoundly, the present likelihood model

allows ecologists to explicitly infer the independent species’ colonization rate parameter

and test its underpinning mechanisms, as it can be proven that this parameter would

be only implicitly measured if used to compute multi-site beta diversity indices.

Keywords: beta diversity, island biogeography theory, ecological mechanisms, community assembly, biodiversity
survey

INTRODUCTION

Beta diversity, which characterizes between-site di�erences in species compositions, has become a
key biodiversity component in understanding the maintenance of biodiversity and the community
structure of species assemblages (Condit et al., 2002; Baselga, 2010; Anderson et al., 2011; Kraft
et al., 2011; Legendre and Legendre, 2012; Baselga and Leprieur, 2015; Chen, 2015). However,
its underlying ecological mechanisms have not been well elucidated (Xu et al., 2015; Xing and
He, 2018). Previous studies showed that some biotic and abiotic factors, like species abundance
distributions, environmental heterogeneity, and distributional aggregation, can influence broad-
scale or latitudinal beta diversity patterns (Kraft et al., 2011; Qian et al., 2013; Xu et al., 2015;
Ulrich et al., 2017; Xing and He, 2018). However, little is known about the impacts of other
ecological mechanisms, particularly dynamic biological processes, on beta diversity and community

Frontiers in Ecology and Evolution | www.frontiersin.org 1 April 2020 | Volume 8 | Article 64
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Ecological communities are assembled by various mechanisms, including a tradeoff

between colonization and extinction processes. However, it is still unclear how this

tradeoff influences pairwise beta diversity patterns. Herein, we propose a novel likelihood

framework to disentangle the compound impacts of species’ colonization and extinction

rates on community-level compositional dissimilarity, which are ignored by traditional

indices. The framework infers two parameters of colonization and extinction rates,

allowing ecologists to study their latitudinal or broad-scale spatial variation patterns and

test the relative influences of associated environmental factors. More importantly, the

likelihood-based model showed that multi-site beta diversity is essentially identical to

the local colonization failure or extinction rate of species in newly colonized sites but

is not related to species’ colonization rates. Profoundly, the present likelihood model

allows ecologists to explicitly infer the independent species’ colonization rate parameter

and test its underpinning mechanisms, as it can be proven that this parameter would

be only implicitly measured if used to compute multi-site beta diversity indices.
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INTRODUCTION

Beta diversity, which characterizes between-site di�erences in species compositions, has become a
key biodiversity component in understanding the maintenance of biodiversity and the community
structure of species assemblages (Condit et al., 2002; Baselga, 2010; Anderson et al., 2011; Kraft
et al., 2011; Legendre and Legendre, 2012; Baselga and Leprieur, 2015; Chen, 2015). However,
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A B S T R A C T

Dispersal is important for biodiversity maintenance in both neutral and niche theories. However, little is known
about the potential role of Allee effect at the community level. In the present study, we developed neutral models
for quantifying the separate and joint influences of the Allee effect and dispersal process, respectively, on species
abundance distribution (SAD) patterns. Tree census data from Barro Colorado Island (BCI), Panama were used as
the case to compare different neutral SAD models. Results showed that Allee effects were not detected in the BCI
tree SAD curve. By contrast, the neutral models with the incorporation of dispersal process (including both
immigration and emigration) can remarkably improve the fitting power of neutral models on the BCI tree SAD
curve. Finally, even though the influence is not detectable, the Allee effect-based SAD models still might be
alternative SAD models for model comparison and null hypothesis testing.

1. Introduction

The neutral theory of biodiversity and biogeography has gained
much attention over the last two decades since its establishment
(Alonso et al., 2006; Hubbell, 2001). Many theoretical and empirical
studies on testing and developing the ecological neutral theory have
been published since that time (Etienne and Haegeman, 2011; He et al.,
2012; McGill, 2003; Rosindell et al., 2010; Volkov et al., 2003, 2007;
Zhou and Zhang, 2008a, 2008b). The neutral model was found to quite
adequately predict species diversity patterns in tropical areas (Rosindell
et al., 2012) where species diversity is very high (Chisholm and Pacala,
2010; Zhou and Zhang, 2008a, 2008b).The Allee effect predicts a po-
sitive correlation between species per-capita growth rates and the po-
pulation size (Allee, 1931; Allee and Bowen, 1932). The existence of the
Allee effect accelerates the extinction risk of species (Allen, 2003;
Dennis, 2002; Geol and Richter-Dyn, 1974), because a species will ul-
timately go extinct after some time passes when its population size is
less than the Allee-effect threshold. Although previous studies made
great progress on the neutral theory of biodiversity (Hubbell, 2001) and
used neutral models to predict species abundance distribution (SAD)
patterns (Etienne, 2007; Etienne and Alonso, 2005; Etienne and Olff,
2005; He, 2005; He and Hu, 2005; Volkov et al., 2003, 2007), only a

few studies so far have focused on evaluating the impacts of Allee ef-
fects on SAD patterns. So, are there any new insights when the Allee
effect is incorporated into the neutral model? A natural expectation
might be that when the Allee effect is incorporated, the resultant fit
with empirical SADs should be much better given the fact that new
biological information is added to the neutral models.

Indeed, there are some recent theoretical studies which provide
insights into the role of the Allee effect on neutral theories of biodi-
versity. For example, in a previous study (Zhou and Zhang, 2006), it
was found that the Allee effect-based theoretical SAD curve was de-
pressed compared to the theoretical SAD curve predicted by a model
that did not consider the Allee effect. This result was expected given the
fact that the Allee effect tends (as explained by Zhou and Zhang, 2006)
(i) to increase the risk of local extinctions of the set of originally rare
species (hence the resulting reduction in species richness) and (ii) to
decrease relative abundances of those species which originally had in-
termediate levels of abundance, with those species progressively be-
coming “new” contributors to the set of rare species (i.e., thereby re-
placing the originally rare, now extinct, species). However, the previous
study (Zhou and Zhang, 2006) presented only simulation-based results,
and those still need to be tested against empirical datasets. Can neutral
SAD models be deduced quantitatively by explicitly incorporating the
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A B S T R A C T

Dispersal is important for biodiversity maintenance in both neutral and niche theories. However, little is known
about the potential role of Allee effect at the community level. In the present study, we developed neutral models
for quantifying the separate and joint influences of the Allee effect and dispersal process, respectively, on species
abundance distribution (SAD) patterns. Tree census data from Barro Colorado Island (BCI), Panama were used as
the case to compare different neutral SAD models. Results showed that Allee effects were not detected in the BCI
tree SAD curve. By contrast, the neutral models with the incorporation of dispersal process (including both
immigration and emigration) can remarkably improve the fitting power of neutral models on the BCI tree SAD
curve. Finally, even though the influence is not detectable, the Allee effect-based SAD models still might be
alternative SAD models for model comparison and null hypothesis testing.

1. Introduction

The neutral theory of biodiversity and biogeography has gained
much attention over the last two decades since its establishment
(Alonso et al., 2006; Hubbell, 2001). Many theoretical and empirical
studies on testing and developing the ecological neutral theory have
been published since that time (Etienne and Haegeman, 2011; He et al.,
2012; McGill, 2003; Rosindell et al., 2010; Volkov et al., 2003, 2007;
Zhou and Zhang, 2008a, 2008b). The neutral model was found to quite
adequately predict species diversity patterns in tropical areas (Rosindell
et al., 2012) where species diversity is very high (Chisholm and Pacala,
2010; Zhou and Zhang, 2008a, 2008b).The Allee effect predicts a po-
sitive correlation between species per-capita growth rates and the po-
pulation size (Allee, 1931; Allee and Bowen, 1932). The existence of the
Allee effect accelerates the extinction risk of species (Allen, 2003;
Dennis, 2002; Geol and Richter-Dyn, 1974), because a species will ul-
timately go extinct after some time passes when its population size is
less than the Allee-effect threshold. Although previous studies made
great progress on the neutral theory of biodiversity (Hubbell, 2001) and
used neutral models to predict species abundance distribution (SAD)
patterns (Etienne, 2007; Etienne and Alonso, 2005; Etienne and Olff,
2005; He, 2005; He and Hu, 2005; Volkov et al., 2003, 2007), only a

few studies so far have focused on evaluating the impacts of Allee ef-
fects on SAD patterns. So, are there any new insights when the Allee
effect is incorporated into the neutral model? A natural expectation
might be that when the Allee effect is incorporated, the resultant fit
with empirical SADs should be much better given the fact that new
biological information is added to the neutral models.

Indeed, there are some recent theoretical studies which provide
insights into the role of the Allee effect on neutral theories of biodi-
versity. For example, in a previous study (Zhou and Zhang, 2006), it
was found that the Allee effect-based theoretical SAD curve was de-
pressed compared to the theoretical SAD curve predicted by a model
that did not consider the Allee effect. This result was expected given the
fact that the Allee effect tends (as explained by Zhou and Zhang, 2006)
(i) to increase the risk of local extinctions of the set of originally rare
species (hence the resulting reduction in species richness) and (ii) to
decrease relative abundances of those species which originally had in-
termediate levels of abundance, with those species progressively be-
coming “new” contributors to the set of rare species (i.e., thereby re-
placing the originally rare, now extinct, species). However, the previous
study (Zhou and Zhang, 2006) presented only simulation-based results,
and those still need to be tested against empirical datasets. Can neutral
SAD models be deduced quantitatively by explicitly incorporating the
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Abstract: In natural ecological communities, most species are rare and thus susceptible to extinction. Con-
sequently, the prediction and identification of rare species are of enormous value for conservation purposes.
How many newly found species will be rare in the next field survey? We took a Bayesian viewpoint and used
observed species abundance information in an ecological sample to develop an accurate way to estimate the
number of new rare species (e.g., singletons, doubletons, and tripletons) in an additional unknown sample.
A similar method has been developed for incidence-based data sets. Five seminumerical tests (3 abundance
cases and 2 incidence cases) showed that our proposed Bayesian-weight estimator accurately predicted the
number of new rare species with low relative bias and low relative root mean squared error and, accordingly,
high accuracy. Finally, we applied the proposed estimator to 6 conservation-directed empirical data sets
(3 abundance cases and 3 incidence cases) and found the prediction of new rare species was quite accurate;
the 95% CI covered the true observed value very well in most cases. Our estimator performed similarly to or
better than an unweighted estimator derived from Chao et al. and performed consistently better than the naı̈ve
unweighted estimator. We recommend our Bayesian-weight estimator for conservation applications, although
the unweighted estimator of Chao et al. may be better under some circumstances. We provide an R package
RSE (rare species estimation) at https://github.com/ecomol/RSE for implementation of the estimators.

Keywords: Bayesian statistics, biodiversity survey, diversity estimation, sampling theory, species rarity

Un Método con Ponderación Bayesiana para Predecir el Número de Especies Raras Recientemente Descubiertas

Resumen: En las comunidades ecológicas naturales, la mayoŕıa de las especies son raras y por lo tanto
susceptibles a la extinción. Como consecuencia, la predicción e identificación de las especies raras son de
enorme valor para los propósitos de la conservación. ¿Cuántas especies recientemente descubiertas serán
clasificadas como raras en el siguiente censo de campo? Tomamos un punto de vista bayesiano y utilizamos
información de la abundancia observada de especies en una muestra ecológica para desarrollas una manera
certera para estimar el número de nuevas especies raras (p. ej.: singleton, doubleton, y tripleton) en una
muestra adicional desconocida. Un método similar se ha desarrollado para conjuntos de datos basados en la
incidencia. Cinco pruebas semi-numéricas (tres casos de abundancia y dos casos de incidencia) mostraron
que nuestra propuesta de estimador con ponderación bayesiana predijo con certeza el número de nuevas
especies raras con un bajo sesgo relativo y un bajo error de la raı́z cuadrada media relativa y, de manera
acorde, una alta certeza. Finalmente, aplicamos el estimador propuesto a seis conjuntos de datos emṕıricos
dirigidos hacia la conservación (tres casos de abundancia y tres casos de incidencia) y encontramos que
la predicción de nuevas especies raras fue certera; el 95% del CI cubrió muy bien al verdadero valor
observado en la mayoŕıa de los casos. Nuestro estimador funcionó de manera similar o incluso mejor
que un estimador sin ponderación derivado de Chao et al. (2015) y funcionó constantemente mejor que
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Resumen: En las comunidades ecológicas naturales, la mayoŕıa de las especies son raras y por lo tanto
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Abstract. The spatial distribution of species is not random; instead, individuals tend to gather,
resulting in a non-random pattern. Previous studies used the independent negative binomial distribu-
tion (NBD) to model the distributional aggregation of a single species, in which the independence of
the distribution of individuals of a species in different quadrats had been assumed. This way of analyz-
ing aggregation will result in the scale-dependent estimation of the aggregation or shape parameter.
However, because non-random (and therefore non-independent) distribution of individuals of a
species in a finite area can be caused by either correlated or clumped distribution of individuals of a
species between neighboring sites, an alternative model would assume that the distribution of individ-
uals of a species over different sampling areas is multinomial. Here, we showed that, by assuming that
regional species abundance followed a NBD while using a multinomial distribution to assign individu-
als of species in different non-overlapped sampling quadrats that are from a partition of the entire
region (quantifying positive correlation or synchrony), the estimation of the shape parameter in this
probabilistic model, which is the negative multinomial distribution (NMD), was scale-invariant (i.e.,
the estimated shape parameter is identical across different partitions of the study region). Accordingly,
the estimation of the shape parameter was related to regional species distribution alone. This implied
that, the shape parameter at the community level, using the NMD model, reflected the evenness of
interspecific abundance. As a comparison, if the distribution of individuals of a single species followed
independent NBDs as studied previously, the shape parameter would measure the evenness of
intraspecific abundance (quantifying single-species’ distributional aggregation). Moreover, our study
highlighted the necessity for adjusting the model for the effects of unsampled species when studying
community-level distributional patterns. Collectively, as long as a target area is partitioned into non-
overlapping quadrats (no matter how their sizes vary), the proposed NMD model in this study, along
with the independent NBDs model, can be jointly formulated as a framework to reconcile the scale-
dependent debate on the shape parameter, unifying the relationship between inter- or intraspecific
abundance and distributional patterns.

Key words: aggregation; correlated distribution; model selection; negative binomial distribution; negative
multinomial distribution; quadrat sampling; scale dependence; species abundance distribution; statistical ecology;
unsampled species.

INTRODUCTION

The spatial distribution of species is not random in space
(Pielou 1977). Usually, some individuals tend to congre-
gate, resulting in the spatial aggregation pattern of the spe-
cies. A negative binomial distribution (NBD) usually
characterizes such a clumping pattern. The NBD is a gen-
eral and widely used model in ecological studies, which can
predict diverse distribution patterns of species, including
random, aggregated, and regular patterns (Pielou 1977,
Chen 2015). These patterns may be driven by a variety of
ecological factors, from habitat heterogeneity to dispersal
limitation.

Impressively, the NBD was originally used to derive Fish-
er’s log series distribution (Fisher et al. 1943) for character-
izing species abundance distribution (SAD) at a community
level. It was also used to quantify the variability of the popu-
lation size of a single species across different local areas (Pie-
lou 1977, Brown et al. 1995), introducing the early idea of
applying NBD models to measuring the distributional
aggregation of species. Since then, the NBD has been exten-
sively applied to various ecological topics, for example, spe-
cies-area relationship (Plotkin et al. 2000, He and Legendre
2002, Green and Ostling 2003), maximum entropy theory
(Pueyo et al. 2007, Wilber et al. 2015), between-site species
similarity (Xu et al. 2015, Chen and Shen 2017), and others
(see a summary of literature review in Appendix S1:
Table S1). At the species level, the parameter describing
aggregated distributions at a specific spatial scale in the
NBD model reflects the variability of the intraspecific abun-
dance or population density of the same species across
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Abstract. Most richness estimators currently in use are derived from models that consider
sampling with replacement or from the assumption of infinite populations. Neither of the
assumptions is suitable for sampling sessile organisms such as plants where quadrats are often
sampled without replacement and the area of study is always limited. In this paper, we propose
an incidence-based parametric richness estimator that considers quadrat sampling without
replacement in a fixed area. The estimator is derived from a zero-truncated binomial
distribution for the number of quadrats containing a given species (e.g., species i) and a
modified beta distribution for the probability of presence–absence of a species in a quadrat.
The maximum likelihood estimate of richness is explicitly given and can be easily solved. The
variance of the estimate is also obtained. The performance of the estimator is tested against
nine other existing incidence-based estimators using two tree data sets where the true numbers
of species are known. Results show that the new estimator is insensitive to sample size and
outperforms the other methods as judged by the root mean squared errors. The superiority of
the new method is particularly noticeable when large quadrat size is used, suggesting that a few
large quadrats are preferred over many small ones when sampling diversity.

Key words: maximum likelihood estimate; modified beta distribution; presence–absence; quadrat
sampling; richness estimator; sampling without replacement; zero-truncated binomial distribution.

INTRODUCTION

The number of species (or richness) in an area is the
most basic diversity measurement. Although complete
enumeration of species might be possible in a relatively
small area of a few hectares, richness has to be estimated
from sampling in situations where census is not feasible.
Many methods have been developed to address this
problem (Palmer 1990, Bunge and Fitzpatrick 1993,
Colwell and Codington 1994, Hellmann and Fowler
1999, Chiarucci et al. 2003, Chao 2005, Magnussen et al.
2006). In general, there are three types of estimators:
species–area curves, abundance-based methods, and
incidence-based methods. Abundance-based methods
require information about abundance, while incidence-
based methods are based on species presence–absence
data. These estimators are not only designed for
handling different types of data but also differ in their
mathematical assumptions. Some of them are derived
purely from mathematical inspiration with little practi-
cal significance (e.g., the multinomial estimator), while
others are developed from practical consideration. As a
result, their performances vary considerably. Compari-
son analysis for many of the estimators has been
conducted using various empirical data (Palmer 1990,

Colwell and Codington 1994, Chazdon et al. 1998,
Magnussen et al. 2006), but there is still lack of general
consensus. Among the many criteria used to judge
estimators, unbiasedness and insensitivity to sample size
are most basic. The latter is particularly useful for the
practical purpose. Given the difficulty and cost of
sampling, it is highly desired to develop estimators that
can give a reasonable estimate even when the sample size
is small.
Sampling with and without replacement are two basic

sample devices. It is intuitive that sampling without
replacement is more efficient as long as sedentary
organisms (e.g., plants) are concerned, although the
majority of the methods currently in use are actually
designed for sampling with replacement or for infinite
populations. This reflects the historical fact that most
richness estimators were initially derived from the mark–
recapture method for animals. Schreuder et al. (1999)
attempted to adjust this type of estimator by adding a
finite population correction term; see also Magnussen
et al. (2006). But this has not proven to be successful (see
Empirical test). As we will show later, if these methods
are unconditionally applied to data from sampling
without replacement, considerable overestimation can
result if sampling proportion, denoted by q ¼ t/T,
becomes large (see The proposed model ).
In this study, we developed an incidence-based

richness estimator for quadrats sampled without re-
placement (see Plate 1). Our new method only requires
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populations. This reflects the historical fact that most
richness estimators were initially derived from the mark–
recapture method for animals. Schreuder et al. (1999)
attempted to adjust this type of estimator by adding a
finite population correction term; see also Magnussen
et al. (2006). But this has not proven to be successful (see
Empirical test). As we will show later, if these methods
are unconditionally applied to data from sampling
without replacement, considerable overestimation can
result if sampling proportion, denoted by q ¼ t/T,
becomes large (see The proposed model ).
In this study, we developed an incidence-based

richness estimator for quadrats sampled without re-
placement (see Plate 1). Our new method only requires

Manuscript received 17 September 2007; revised 19
November 2007; accepted 21 November 2007. Corresponding
Editor: A. M. Ellison.

3 E-mail: tjshen@amath.nchu.edu.tw
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與時俱進的學思園



Q: 發表 OA 期刊，同儕的眼光？ 

Q: 發表 OA 期刊，升等或找⼯作的
助益？
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常⾒問題樣態



Q and A
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謝謝您的參與！
Thank you for 

joining this talk!


